Operator algebras for multivariable dynamics

نویسندگان

  • Kenneth R. Davidson
  • Elias G. Katsoulis
چکیده

Let X be a locally compact Hausdorff space with n proper continuous self maps σi : X → X for 1 ≤ i ≤ n. To this we associate two conjugacy operator algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra A(X, τ) and the semicrossed product C0(X)×τ Fn . We develop the necessary dilation theory for both models. In particular, we exhibit an explicit family of boundary representations which determine the C*-envelope of the tensor algebra. We introduce a new concept of conjugacy for multidimensional systems, called piecewise conjugacy. We prove that the piecewise conjugacy class of the system can be recovered from the algebraic structure of either A(X, σ) or C0(X)×σ Fn . Various classification results follow as a consequence. For example, if n = 2 or 3, or the space X has covering dimension at most 1, then the tensor algebras are algebraically isomorphic (or completely isometrically isomorphic) if and only if the systems are piecewise topologically conjugate. We define a generalized notion of wandering sets and recurrence. Using this, it is shown that A(X, σ) or C0(X) ×σ Fn is semisimple if and only if there are no generalized wandering sets. In the metrizable case, this is equivalent to each σi being surjective and v-recurrent points being dense for each v ∈ Fn . 2000 Mathematics Subject Classification. Primary 47L55; Secondary 47L40, 46L05, 37B20, 37B99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-envelopes of Universal Free Products and Semicrossed Products for Multivariable Dynamics

We show that for a class of operator algebras satisfying a natural condition the C∗-envelope of the universal free product of operator algebras Ai is given by the free product of the C ∗-envelopes of the Ai. We apply this theorem to, in special cases, the C∗-envelope of the semicrossed products for multivariable dynamics in terms of the single variable semicrossed products of Peters. An importa...

متن کامل

Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras

In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.

متن کامل

On Bilateral Weighted Shifts in Noncommutative Multivariable Operator Theory

We present a generalization of bilateral weighted shift operators for the noncommutative multivariable setting. We discover a notion of periodicity for these shifts, which has an appealing diagramatic interpretation in terms of an infinite tree structure associated with the underlying Hilbert space. These shifts arise naturally through weighted versions of certain representations of the Cuntz C...

متن کامل

On topological transitive maps on operator algebras

We consider the transitive linear maps on the operator algebra $B(X)$for a separable Banach space $X$. We show if a bounded linear map is norm transitive on $B(X)$,then it must be hypercyclic with strong operator topology. Also we provide a SOT-transitivelinear map without being hypercyclic in the strong operator topology.

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007